
ECN Programming Contest, November 25, 2023

A — Gifts
Fanurie wants to visit each of his N friends and leave a gift of a certain value. He drew a map in the form of
an undirected tree with N vertices and found a rule by which he would visit them.

From a node X, Fanurie does the following operations:

leave the gift ready for node X;
go through unvisited nodes in ascending order;
returns to the node from which he arrived in X.

Fanurie decides to always start from node 1.

In order not to upset his friends, he decided to compensate for the delay by increasing the value of the gift.
Thus, for each 2 ≤ i ≤ N, v[i] is known – by how much the value of the gift received by the ith visited friend
increases compared to the value of the gift received by the i – 1-th visited friend. It is considered that the
ϐirst friend visited receives the value v[1].

Fanurie deϐines the subtree induced by a list of nodes as the set of nodes in the minimal subtree that
contains each node in the list. It also deϐines the value of a list of nodes as the sum of the values of the gifts
left in the nodes.

Fanurie is asking you to help him answer Q queries of the form S K a1 a2 … aK with the following meaning:

Which is the node in the subtree induced by the K elements that added to the list of nodes would make the
value of the list as close as possible to S? You can not add a node that is already present in the list. If there
are several options, choose the smallest node.

Fanurie promises to give you a priceless gift if you help him.

Input Speciϐication

The ϐirst line contains two integers N and Q. The second line has N values, the elements of v. Each of the
following N – 1 lines have two integers, meaning that there is an edge between them. The following Q lines
describe the questions in the form S K a1 a2 … aK.

Input Limits and Constraints

1 ≤ N ≤ 100 000;
1 ≤ Q ≤ 50 000;
1 ≤ v[i] ≤ 1 000, 1 ≤ i ≤ N;
2 ≤ K ≤ 3;
1 ≤ S ≤ 1 000 000 000;
it is guaranteed that there are at least K + 1 nodes in any induced subtree.

Output Speciϐication

Print one line to the standard output with Q space-separated integers, representing the answer to each
query. Do not put a space after the last number!

1 of 2

Sample Input

1. 9 3
2. 10 5 6 4 3 2 3 1 4
3. 1 2
4. 1 3
5. 2 4
6. 2 5
7. 4 6
8. 4 7
9. 3 8

10. 3 9
11. 73 2 5 6
12. 34 1 3
13. 1000000000 2 7 8

Output for Sample Input

1. 2 8 9

Explanation

In the ϐirst query the induced subtree has the following node-value pairs: {(2,15), (4,21), (5,30), (6,25),
(7,28)}. Both nodes 2 and 4 lead to a list value at a distance 3 from S (which is minimum). In the second
example node 8 leads to a list value equal to S.

2 of 2

ECN Programming Contest, November 25, 2023

B — Colors in Store
A new shipment of n tablecloths has arrived at a store. Each tablecloth is described by three attributes:
price (pi), front color (ai), and back color (bi), where pi is an integer and represents the cost of the ith
tablecloth, and ai and bi are integers ranging from 1 to 3, indicating the colors of the front and back of the
tablecloth, respectively. It is guaranteed that all pi values are unique.

The store expects m customers to visit, and each customer intends to purchase exactly one tablecloth. For
each customer, we know their favorite color (cj). A customer will buy a tablecloth if either the front or
back side matches their favorite color. In such cases, the customer selects the cheapest available option
among the tablecloths that match their preferred color. If there are no tablecloths with an acceptable
color for the customer, they won't make a purchase. The customers arrive sequentially, and each customer
is served only after the previous one has been attended to.

Your task is to calculate the price each customer will pay for the tablecloth they choose.

Input Speciϐication

The ϐirst line contains an integer n (1 ≤ n ≤ 200 000), representing the number of tablecloths. The
following line provides a sequence of n integers: p1, p2, …, pn (1 ≤ pi ≤ 1 000 000 000), indicating the
prices of the tablecloths. The next line contains a sequence of n integers: a1, a2, …, an (1 ≤ ai ≤ 3),
representing the front colors of the tablecloths. The subsequent line contains a sequence of n integers:
b1, b2, …, bn (1 ≤ bi ≤ 3), indicating the back colors of the tablecloths. Then, there's a single integer m
(1 ≤ m ≤ 200 000), denoting the number of customers. The next line provides a sequence of m integers:
c1, c2, …, cm (1 ≤ cj ≤ 3), signifying the favorite color of each customer. The customers arrive in the order
they are listed in the input, and each customer is served only after the previous one has been assisted.

Output Speciϐication

Print one line to the standard output with m space-separated integers, where the jth integer should
represent the price of the tablecloth that the jth customer will purchase. If the jth customer decides not to
buy anything, print –1 for that customer.

Sample Input

1. 5
2. 300 200 400 500 911
3. 1 2 1 2 3
4. 2 1 3 2 1
5. 6
6. 2 3 1 2 1 1

Output for Sample Input

1. 200 400 300 500 911 -1

1 of 1

ECN Programming Contest, November 25, 2023

C — Golden Primes
A prime number is called a golden prime when it takes the following form:

p = Φ2 – Φ – 1,

where Φ = 2n, and n is a positive integer.

Your task is to ϐind golden primes. Write a program that calculates all values for n for which p is a golden
prime less than a given value b.

Input Speciϐication

The input consists of a single positive integer b < 21000.

Output Speciϐication

Your program must print to the standard output, on separate lines, all n values found.

Sample Input

1. 1024

Output for Sample Input

1. 2
2. 4
3. 5

1 of 1

ECN Programming Contest, November 25, 2023

D — Egyptian Fractions
Mathematics is ancient. Very ancient. Imagine yourself more than 3500 years ago in ancient Egypt. An
Egyptian fraction is a ϐinite sum of distinct unit fractions, like this:

The sum of these fractions is 17⁄70. It may not be immediately evident that every fraction can be
represented as a sum of distinct unit fractions, making it, too, an Egyptian fraction. However, these
decompositions are not necessarily unique. For instance,

The practicality of Egyptian fractions becomes apparent when you imagine the scenario of paying 17⁄70 of

a quantity. Instead of repeating the fraction 1⁄70 17 times, the Egyptians devised a more efϐicient

approach. By preparing in advance some unit fractions, they could simply present two of them: 1⁄7 and
1⁄10. This demonstrates how the use of Egyptian fractions offered a more practical solution in such
situations. While the use of Egyptian fractions proved practical in certain scenarios, a drawback arises
from the challenge of decomposing a fraction into a sum of distinct unit fractions. Many related questions
remain open today. For instance, there is a conjecture, not yet proven, suggesting that for every n ≥ 5, the
fraction 4/n can be decomposed into a sum of not more than 3 unit fractions (Erdős–Straus conjecture,
veriϐied up to n < 1017).

A natural question arises: given a fraction, what is the minimum number of unit fractions in its Egyptian
number representation? Currently, it remains unknown whether a polynomial time algorithm exists for
this problem, and the computational complexity is also uncertain. While we can resort to a brute-force
search for computation, it's an open challenge to devise a more efϐicient algorithm.

Your task now is to design an algorithm capable of computing the Egyptian fraction representation(s) of a
given fraction with the fewest possible terms. Assume the fraction is composed of positive integers and
has a value less than 1. Your goal is to compute all its expansions as a sum of unit fractions with the
minimum number of terms.

Input Speciϐication

The input contains several lines, each has a fraction written in the form a/b, where a and b are positive
integers, 0 < a < b.

Output Speciϐication

The output should have the same number of lines as the input. For each input line, print one line to the
output, containing a number, the minimum number of unit fractions, followed by the space-delimited
denominators of the minimum-length expansion enclosed in parentheses. If the expansion is not unique,
additional denominators should be listed after a comma and a space. Ensure that the denominators and
parentheses are ordered in increasing lexicographical order for each line.

1 of 2

Sample Input

1. 33/182
2. 223/12342
3. 511/1404

Output for Sample Input

1. 2 (7 26)
2. 2 (102 121)
3. 3 (3 36 351), (4 9 351), (4 13 27)

2 of 2

ECN Programming Contest, November 25, 2023

E — Lanovka – The Cable Car
There are N peaks in the Vector Vista Mountains. We want to install cable car columns on K adjacent peaks
so that if the largest height of the cable car (peak + column) is H, then on the other peaks the heights
should be H – 1, H – 2, …, H – K + 1, so that the cable car continues to go up smoothly. The cable car always
starts from the right and goes to the left.

We can achieve this by increasing the height of the cable car columns by 1 unit. By how many minimum
units must the heights of columns be increased in total in order to create a cable car of length K?

Input Speciϐication

The ϐirst line of the input contains the number of test cases T (1 ≤ T ≤ 20).

This is followed by two lines for each test case. The ϐirst line contains the number of peaks N
(1 ≤ N ≤ 200 000) and the length of the cable car K (1 ≤ K ≤ N). The second line contains N natural
numbers Hi (1 ≤ i ≤ N), the heights of the mountain peaks (1 ≤ Hi ≤ 1 000 000 000).

Output Speciϐication

For each test case, print a single number on a line by itself: the minimum number of units.

Sample Input

1. 1
2. 5 3
3. 8 4 5 9 6

Output for Sample Input

1. 4

1 of 2

Explanation

The 3 possible cable cars are:

Case 1: Peaks 5, 9, 6, with heights 10, 9, 8, and differences 5, 0, 2. The sum is 7.
Case 2: Peaks 4, 5, 9, with heights 11, 10, 9, and differences 7, 5, 0. The sum is 12.
Case 3: Peaks 8, 4, 5, with heights 8, 7, 6, and differences 0, 3, 1. The sum is 4.

The minimum of the total differences is 4.

2 of 2

ECN Programming Contest, November 25, 2023

F — Kings Again
Last year's problem with kings was too easy, so I made it more difϐicult. Determine the number of ways in
which k kings can be placed on an n × m chessboard without attacking each other. Two kings attack each
other if they are on adjacent cells horizontally, vertically, or diagonally.

Input Speciϐication

The ϐirst line of the input contains t, the number of test cases to follow (1 ≤ t ≤ 15 000). Each test case is
described by the values of n, m, and k, in this order, separated by spaces (1 ≤ n ≤ m ≤ 15, 1 ≤ k ≤ 100).

Output Speciϐication

For each test case, you must output a single line, the number of ways modulo 109 + 7.

Sample Input

1. 3
2. 1 4 2
3. 3 3 4
4. 4 4 4

Output for Sample Input

1. 3
2. 1
3. 79

1 of 1

ECN Programming Contest, November 25, 2023

G — Breaking a Quantum Cryptography Machine
During the Third Interstellar War, the Secret Service tasked you with cracking the enemy's quantum
cryptography machine that protects the enemy's communications. The last captured cryptographic
messages consist of instructions intercepted by the Secret Service and their corresponding solutions. The
correctness of the messages have been veriϐied by the Secret Service. Find out the operating principle of
the quantum machine using the messages broken so far, and reimplement it using C/C++.

Captured Instructions #1

1. TITKOS_P 3
2. TITKOS_P 13
3. TITKOS_A
4. TITKOS_P 5
5. TITKOS_S
6. TITKOS_E

Solution #1

1. -11

Captured Instructions #2

1. TITKOS_P 2
2. TITKOS_P 8
3. TITKOS_P 23
4. TITKOS_S
5. TITKOS_A
6. TITKOS_E

Solution #2

1. 17

1 of 2

Captured Instructions #3

1. TITKOS_P 2
2. TITKOS_P 8
3. TITKOS_P 23
4. TITKOS_A
5. TITKOS_S
6. TITKOS_E

Solution #3

1. 29

Input Speciϐication

The input contains a sequence of similar instructions to those in the captured messages, one instruction
per line. The input may be considered correct in all cases. There are no conϐlicting instructions or
instructions that cannot be executed at any point in time. All intermediary numbers as well as the results
are integers that ϐit into the range of the int type.

Output Speciϐication

Print one line to the standard output, containing the solution of the sequence of instructions read from
the input.

2 of 2

ECN Programming Contest, November 25, 2023

H — “Optimizing” Ascent: Navigating Bear-
Dangerous Territory in a Binary Matrix
Mountain

Let's imagine a “mountain” with n levels (1, 2, …, n), where the levels (or “mountain slices”) are encoded
by m × m binary matrices. In each matrix, the value 1 indicates points belonging to the mountain. Both 1s
and 0s form a connected region, considering two elements adjacent if they share a common side. Other
two constraints are: (i) the mountain slices are “concentric” in the sense that in the positions of 1s at level
i (i = 2, …, n), there are also 1s at level (i – 1); (ii) the levels have no common boundary points. In the last-
level matrix, there is a single 1 representing the peak. Since all internal points at each level are considered
bear-dangerous, we want to climb to the summit using the following method: (i) we can start from any
boundary/edge point of level 1; (ii) from the edge of each level to the edge of the next level, we want to
reach in the minimum number of steps, ultimately reaching the summit at the top level; (iii) climbing to
the next level or moving along the edge of any level is considered safe (these areas are avoided by bears,
as they have a fear of heights). If we follow the strategy outlined above, how many steps do we take in
dangerous territory from the base to the summit?

Input Speciϐication

The ϐirst line of the input contains t, the number of test cases. For each test case: (i) the ϐirst line contains
n and m, the number of levels and the size of the square matrices (1 < n < 100, 3 < m < 100); (ii) each of
the next n · m lines contains m binary values (0/1), separated by one space, giving the elements of the
matrices.

Output Speciϐication

For each test case, print a single line to the standard output, containing the number of steps taken in
dangerous territory.

1 of 2

Sample Input

1
3 10
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 1 0 0
0 0 0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 1 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Output for Sample Input

2

Explanation

The sample input consists of a single test case (t = 1) corresponding to a 3-level mountain coded by
10 × 10 matrices. Bold 1s represent edge points. Underlined 1s represent the accessed dangerous points.
At level 1, the edge points of level 2 are accessed by 1 internal step (step (3,9)–(3,8)), and at level 2, the
position of the peak point from level 3 is also accessed by 1 internal step (step (5,5)–(5,6)).

2 of 2

ECN Programming Contest, November 25, 2023

I — Hamilton
Santa Claus has decided this year to start delivering Christmas gifts on time, with the help of his elves.

His favorite elf, named Hamilton, needs to traverse a 10000-meter-long, 15-meter-wide stretch of road,
where the coordinates (x, y) of each mailbox are precisely known (0 ≤ x ≤ 10 000, 0 ≤ y ≤ 15, x and y are
natural numbers).

For any two mailboxes (xa, ya) and (xb, yb), the abscissas are different (xa ≠ xb). And, of course, this
condition cannot be fulϐilled for the ordinates ya and yb. Hamilton, the elf, has to distribute approximately
4000 packages and would like to carry the packages to mailboxes in such a way that he travels the
shortest distance in a single round trip, placing each package in the corresponding mailbox. In other
words, the abscissas of the mailboxes continuously increase in the ϐirst segment and then continuously
decrease. The length of the road should be measured from the left side, starting from the ϐirst mailbox,
and it should end in the start point.

The requirement for the task is to calculate, given the coordinates of the mailboxes, the shortest distance
starting from the ϐirst mailbox.

Input Speciϐication

The ϐirst line of the input contains the number of mailboxes n. This is followed by n lines, each containing
two natural numbers x and y, separated by a space, representing the coordinates of a mailbox.

Output Speciϐication

A single real number should be printed, representing the length of the shortest route, with exactly 6
decimals.

Sample Input

1. 5
2. 4 5
3. 1 1
4. 6 5
5. 5 3
6. 9 1

Output for Sample Input

1. 20.944272

1 of 2

Explanation

Hamilton, the elf, travels the following path from mailbox to mailbox:

5 + 2 + 5 + 4.47213595 + 4.47213595 = 20.944272 (with 6 decimals precision).

2 of 2

ECN Programming Contest, November 25, 2023

J — Find the Identical Twins and Triplets
The real story (three identical strangers)

Starting with 1960, the psychiatrist Peter Neubauer conducted a controversial study about identical twins
and triplets adopted apart. The purpose of this study was to determine which factor is more important in
development of a human being: genetics or environmental. Twenty years after, Robert Shafran, David
Kellman, and Eddy Galland found one another through sheer coincidence and discovered they were
separated after their birth. After that, Peter Neubauer ceased the study, all the collected data have been
sealed at Yale University and can't be opened until 2066.

The problem to be solved

Given a database of population, your task is to identify every group of identical twins or triplets (sharing
the same DNA) and display the members of every group where at least one member is adopted.

Input Speciϐication

The database of population includes some pieces of information about each person, from which we
selected only the necessary ones. The database is described as follows:

The ϐirst line contains the number of persons n (n ≤ 160 000).
Each of the next n lines contains the following information about each person:

personal code (31-bit positive integer)
DNA signature (≤ 11 uppercase letters)
the character “A” if the person is adopted, or “-” (minus) otherwise
name of the person (≤ 27 characters including whitespace)

After inserting a group of twins or triplets, not used positions between consecutive personal codes
(considering the ascending order) will never be assigned. For example, in the case of the sample input
(see below), 128, 130, and 131 will never be assigned.

Output Speciϐication

After identifying all groups of identical twins or triplets, display the members (with personal code and
name separated by a space) of each group where at least one member is adopted. Insert an empty line
between any two consecutive groups. The list should be ordered by personal code.

1 of 2

Sample Input

1. 10
2. 132 TCA - Lim Leo
3. 135 GAT - Gal Vera
4. 101 ACG A Ban Remo
5. 105 ACT - Kan Mia
6. 107 AGC - Mir Ando
7. 111 AGC A Nor Ken
8. 127 TCA - Lim Nico
9. 103 ACT - Kor Ema

10. 129 TCA A Pat Sam
11. 124 TAC - Gor Alex

Output for Sample Input

1. 107 Mir Ando
2. 111 Nor Ken
3.
4. 127 Lim Nico
5. 129 Pat Sam
6. 132 Lim Leo

Explanation

The following groups are identiϐied:

103, 105: no one is adopted, so we don't display this group.
107, 111: at least one member is adopted.
127, 129, 132: at least one member is adopted.

2 of 2

ECN Programming Contest, November 25, 2023

K — Dependencies
Amazon Web Services (AWS) CloudFormation is a service that helps you model and set up your AWS
resources so that you can spend less time managing those resources and more time focusing on your
applications that run in AWS. You create a template that describes all the AWS resources that you want,
and CloudFormation takes care of provisioning and conϐiguring those resources for you. In a
CloudFormation template, you specify the logical names of resources, together with their properties,
including the dependent resources. The logical name (or logical ID) must be alphanumeric and unique
within the template. The logical name is used to reference to the resource in other parts of the template.

In the following CloudFormation template, such logical names are MyEC2Instance and MyEIP:

AWSTemplateFormatVersion: 2010-09-09
Description: A sample template
Resources:
 MyEC2Instance:
 Type: 'AWS::EC2::Instance'
 Properties:
 ImageId: ami-0ff8a91507f77f867
 InstanceType: t2.micro
 KeyName: testkey
 BlockDeviceMappings:
 - DeviceName: /dev/sdm
 Ebs:
 VolumeType: io1
 Iops: 200
 DeleteOnTermination: false
 VolumeSize: 20
 MyEIP:
 Type: 'AWS::EC2::EIP'
 Properties:
 InstanceId: !Ref MyEC2Instance

Write a program that reads logical names of resources given in an AWS CloudFormation template from
the standard input. For each logical name, you will be given all the other names of resources that are
required to exist for the resource to be created. Your program has to determine whether a given sequence
of resources can or cannot be created in the speciϐied order, and if not, the program also has to give the
logical names of all resources in the sequence that cannot be created.

Input Speciϐication

The ϐirst line of the input contains two integers R and S, representing the number of resources and the
number of sequences, respectively (1 ≤ R ≤ 100, 1 ≤ S ≤ 100). Each of the following R lines describes a
resource and its dependencies (in no particular order). Each resource is represented by an identiϐier,
which is a string of at most 20 alphanumeric characters. The ϐirst resource in each line is followed by a
colon (“:”), and then optionally a space-separated list of its dependencies, also being resource identiϐiers.
Finally, the last S lines of the input contain the sequences, in the form of space-separated resource IDs.
Both the resource descriptions and the sequences will contain only valid resource IDs.

Output Speciϐication

For each sequence in the input, print one line to the output.

1 of 2

If there are at least two resources in the sequence that cannot be created in the given order
(“problematic” resources), then print “Problematic resources: ”, followed by a space-separated list of the
logical names of all the problematic resources in the same order as they appeared in the sequence.

If there is only one problematic resource, print the message “Problematic resource: ”, followed by the
logical name of the problematic resource.

If all the resources can be created in the order presented in the sequence, then print “No problematic
resources.”.

Sample Input 1

1. 2 2
2. MyEC2Instance:
3. MyEIP: MyEC2Instance
4. MyEC2Instance MyEIP
5. MyEIP MyEC2Instance

Output for Sample Input 1

1. No problematic resources.
2. Problematic resource: MyEIP

Sample Input 2

1. 5 2
2. A: B C D
3. B: D
4. C:
5. D:
6. E: A B
7. A B C D E
8. D B C A E

Output for Sample Input 2

1. Problematic resources: A B E
2. No problematic resources.

2 of 2

ECN Programming Contest, November 25, 2023

L — Windmill Lottery
In Windmillia, there is a special national lottery system. Everyone can get a number and participate in
countless draws. The numbers owned by the players are put in two lines (Line1 and Line2) based on the
number speciϐication, and they will belong to that line forever. The numbers and draws are generated
based on the following rules:

LineHelpern = (((La * LineHelpern – 1 + Lb) * Lc) + Ld) mod (109 * 7)
Linen = LineHelpern mod 3 + 1

The Linen number can be 1 or 2, which is used to insert a number into the speciϐic line, or 3, which
means performing draw if it is possible.

Numbern = (((a * Numbern – 1 + b) * c) % d)

If Linen is 1 or 2, then Numbern is used as a number. Else, Numbern is used as rotationCount for the
draw.

Offseti = (((La * Offseti – 1 + Lb) * Lc) + Ld) mod 21 – 10

Offset is computed only when Linen is 3.

A draw can take place at any time if the count of the numbers in the two lines have the same parity. A
draw is performed as follows:

The two lines are being sorted.
The middle point of Line1 and Line2 is placed on each other (in case of even count number, a virtual
center is selected in both lines, between the two middle numbers).
A rotation count is set (rotationCount) and Line2 is rotated around the middle point rotationCount
times by 180 degrees, while Line1 stays ϐixed.
From now on, we consider the middle point being the middle point of the two lines if the number of
elements in either is an odd number; otherwise, middle point is the middle-left point if Offseti < 0,
and middle-right point if Offseti ≥ 0, in both lines.
We take the two numbers with Offseti offset from the middle points, and calculate their sum modulo
m, where m is the maximum value found already in the two lines. If a line is too short to have a
corresponding position, we can take 0 for that number.
The computed value will be the winning number of the draw.

Input Speciϐication

The ϐirst line contains the values of a, b, c, d, and the starting value for Number (ϐive space-separated
numbers). The second line contains the values of La, Lb, Lc, Ld, and the starting value for LineHelper (ϐive
space-separated numbers). The third line contains the initial value of Offset and the value of n, the overall
number of numbers generated, separated by a space.

1 of 2

Input Limits and Constraints

1 ≤ lottery numbers ≤ 1010;
0 ≤ lottery numbers count ≤ 106;
–10 ≤ Offset ≤ 10;
0 ≤ rotationCount ≤ 1010;
1 ≤ a, b, c, d, La, Lb, Lc, Ld ≤ 105.

Output Speciϐication

The output should contain the result of every draw, one line for every number.

Sample Input

1. 1 1 1 101 123
2. 1 1 1 1 1
3. 2 30

Output for Sample Input

1. 54

Explanation

After generating 30 numbers, the two arrays are sorted, because a draw is generated. After sorting, they
are placed so that the middle points are in the same column:

Line1: 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65

Line2: 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

The draw is generated with Offset = –6 and rotationCount = 68. Line2 is rotated 68 times, and the –6th
elements relative to the middle points are added together: (26 + 28) = 54 (mod 67). The result is printed.
There was only one draw.

2 of 2

ECN Programming Contest, November 25, 2023

M — Modputer
Modputer is a strange mathematical computing machine that works as follows. The machine has an
internal state, which is represented by an array A of N positive integers. The input of the machine is a list
of M positive integers, each greater than 1.

The machine reads the integers on the input one by one. For each integer D in the input, the state of the
machine gets updated: every integer in the state array which is divisible by D increases by one.

It is difϐicult to simulate the transitions of Modputer using a regular computer. Your task is to count the
number of times each integer in the state array got updated while processing the input of the machine
and report the total number of changes.

More formally, let A[i] denote the value of the ith element of the state array before reading the input, and
B[i] denote the value of the same element after processing the input. You must calculate the sum of
B[i] – A[i] over all i.

Input Speciϐication

The ϐirst line of the input contains N and M, the number of elements in the state array and the length of
the input list (1 ≤ N, M ≤ 100 000).

Each of the next N lines contains an integer A[i], the initial values present in the state array
(1 ≤ A[i] ≤ 300 000). Each of the next M lines contains an integer D[i], the input values
(2 ≤ D[i] ≤ 300 000).

Output Speciϐication

Print one line to the standard output, containing the total number of changes in the values of the state
array while processing the input.

Sample Input

1. 3 5
2. 10
3. 11
4. 12
5. 2
6. 11
7. 4
8. 13
9. 2

1 of 2

Output for Sample Input

1. 12

Explanation

The initial state array is [10, 11, 12].

After reading the value D[0] = 2, the state changes to [11, 11, 13].

After reading the value D[1] = 11, the state changes to [12, 12, 13].

After reading the value D[2] = 4, the state changes to [13, 13, 13].

After reading the value D[3] = 13, the state changes to [14, 14, 14].

After reading the value D[4] = 2, the state changes to [15, 15, 15].

The ϐirst state value was updated 5 times, the second 4 times and the third 3 times. The total number of
changes is 5 + 4 + 3 = 12.

2 of 2

ECN Programming Contest, November 25, 2023

N — Carpathian Riders
Carpathian Riders is a famous motorcycle gang and competitive programming club. They decided to
participate in the upcoming ECN Sapientia programming contest, travelling there on their bikes. To get to
the contest venue, they must cross the Carpathian Mountains.

The Carpathians is a grid of R rows and C columns. Each cell has an elevation value between 0 and 1000,
inclusive. Some cells are not passable on motorbikes – those cells are marked with the elevation value –1.

The gang can enter the Carpathians at any passable cell on the western edge of the grid and leave the
mountains at some cell on the eastern edge. They travel from the west to the east in multiple steps. In
each step, they can move to the cell either directly to the east, or diagonally to the northeast, or diagonally
to the southeast. Each cell that they visit must be passable.

A sample grid representing the Carpathian Mountains.

The gang does not want to be late from the contest, so they try to avoid riding up to cells with high
elevation: the sum of elevations during the trip must be minimized.

Sounds easy enough? Well, there's a catch. Since this is a motorcycle gang, they love visiting mountain
passes. A mountain pass is a grid cell that has a strictly greater elevation value than the two cells to its east
and west, but has a strictly lower elevation value than the two cells to its north and south. Cells on the
edges of the grid cannot be mountain passes, similarly to cells adjacent to impassable cells. In the example
above, all cells that are mountain passes are shaded in grey.

The bikers decided that they want to visit exactly P passes along the trip. Your task is to help them
planning a trip from the west to the east which contains exactly P passes, avoids impassable cells and the
sum of elevations is minimized.

Input Speciϐication

The ϐirst line of the input contains the number of rows and columns R and C (3 ≤ R, C ≤ 500) and the exact
number of passes to visit P (0 ≤ P ≤ 10).

Each of the next R lines contains C elevation values. Impassable locations are represented by –1, and all
other elevations are between 0 and 1000, inclusive. There is at least one cell on the western and one cell
on the eastern edge of the grid that are passable.

1 of 2

Output Speciϐication

Print one line to the standard output, containing the sum of elevations along an optimal trip with exactly P
passes. If no such trip exists, output the string “impossible”.

Sample Input 1

1. 5 7 2
2. -1 -1 2 5 4 3 1
3. 3 4 1 4 1 2 1
4. 3 4 5 5 3 4 5
5. 2 3 2 1 2 3 2
6. -1 5 4 1 4 4 2

Output for Sample Input 1

1. 14

Sample Input 2

1. 4 3 1
2. 3 4 5
3. 2 4 2
4. 1 5 4
5. 1 1 1

Output for Sample Input 2

1. impossible

Explanation

The ϐirst example corresponds to the example in the statement. An optimal trip consists of the cells with
elevations 2 – 3 – 2 – 1 – 3 – 2 – 1.

In the second example, there are no mountain passes in the grid, so it is not possible to plan a trip that
contains exactly 1 pass.

2 of 2

